krishna, 1969) for C–Br and between 1.73 Å (Schaefer, 1970) and 1.81 Å (Dejace, 1955) for C–Cl, taking only one example of the extreme cases. The present determinations seem to confirm the higher values.

The C–C–C bond angles with a mean value of $111\cdot0$ and $111\cdot5^{\circ}$ for DBD and DCD, respectively (Table 5), are in fairly good agreement with the mean value of $111\cdot5^{\circ}$ found for galactitol, verifying earlier observations of the widening of C–C–C bond angles in chain carbon molecules. The C–C–O bond angles, however, average 107.6 and 108.5° for DBD and DCD, respectively, being less than the tetrahedral angle as well as those reported for galactitol.

All oxygen atoms have two intermolecular oxygen neighbours in two directions nearly parallel to plane (001) and in hydrogen bond distances as it can be realized from Fig. 4 and Table 10. In this scheme of hydrogen bonding all oxygen atoms are involved as donors as well as acceptors resulting in closed circuits of hydrogen bondings. These closed circuits are all congruent and have their oxygen atoms at the corners of a parallelogram with an angle of 99.3° (Fig. 5, Table 10). From Figs. 4 and 5 it can be made clear that every molecule is always linked to four neighbouring molecules by two-two hydrogen bonds. In this way the closed circuits of hydrogen bondings result in two-dimensional networks of molecules. These networks are parallel to the (001) plane and are held together only by van der Waals forces.

The packing of the two-dimensional molecular networks is visualized in Fig. 4, from which it can also be realized that the neighbouring networks are contacted by the terminal halogen and hydrogen atoms of the chain molecules. The shortest intermolecular distances of these atoms are summarized for the two derivatives in Table 11. From these data it can be ascertained that between two neighbouring networks every molecule contacts three molecules of the neighbouring network. Two of these contacts are halogen-halogen and the third is halogen-hydrogen. The distances of these contacting atoms agree very well with the sum of the van der Waals radii in the case of DCD and are little shorter in DBD.

References

- ALBANO, V., DOMENICANO, A. & VACIAGO, A. (1966). Full-Matrix Least-Squares Refinement Program for the IBM 7040 computer adapted for the ICT 1905 computer. Centro di Studio per la Strutturistica Chimica del CNR, Roma.
- BERMAN, H. E. & ROSENSTEIN, R. D. (1968). Acta Cryst. B24, 435.
- CRUICKSHANK, D. W. J. (1961a). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Report of a Conference held at Glasgow, 1960. Oxford: Pergamon Press. CRUICKSHANK, D. W. J. (1961b). Acta Cryst. 14, 896.
- DEJACE, J. (1955). Acta Cryst. 8, 851.
- DOMENICANO, A. & VACIAGO, A. (1966). Three-dimensional Fourier Program for the IBM 7040 computer adapted for the ICT 1905 computer. Centro di Studio per la Strutturistica Chimica del CNR, Roma.
- INSTITORIS, L. (1967). Hungarian Patent, No. 152594.
- INSTITORIS, L. (1970). Neoplasma. In the press.
- INSTITORIS, L., HORVÁTH, I. P. & CSÁNYI, G. (1967). Arzneimittel-Forschung 17, 145.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KELLNER, B., NÉMETH, L., HORVÁTH, I. P. & INSTITORIS, L. (1967). Nature, Lond. 213, 402.
- GOPALAKRISHNA, E. M., COOPER, A. & NORTON, D. A. (1969). Acta Cryst. B25, 1601.
- GRIFFITHS, A. & HINE, R. (1970). Acta Cryst. B26, 29.
- Schaefer, W. P. & Marsh, R. E. (1969). Acta Cryst. B25, 1675.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.

Acta Cryst. (1971). B27, 815

Structure Determination of Mg₃TeO₆

By H. SCHULZ AND G. BAYER

Institut für Kristallographie und Petrographie, Eidgenössische Technische Hochschule, Zürich, Switzerland

(Received 3 August 1970)

The structure of Mg₃TeO₆ has been determined by X-ray methods. Single crystals could be grown from NaCl or Na₂SO₄. Mg₃TeO₆ represents a new pseudocubic structure type; it is rhombohedral with $a_R = 6.05$ Å, $\alpha_R = 90^{\circ}50'$, Z = 2, $D_x = 4.46$ g.cm⁻³, space group R³. The final R value was equal to 4.8 %. Tellurium has a regular octahedral oxygen surrounding with Te-O=1.91 Å. The coordination of Mg is a distorted octahedron with Mg-O distances varying between 2.02 and 2.28 Å. The thermal expansion characteristics were measured up to 820 °C.

Introduction

Previous investigations on the crystal chemistry of tellurium oxides (Bayer, 1969) proved the existence of compounds $M_3^{2+}Te^{6+}O_6$ which can be derived from orthotelluric acid H_6TeO_6 . Among these Ni₃TeO₆ has a corundum-type structure (Bayer, 1967; Newnham & Meagher, 1967; Kasper, 1968) and Cu₃TeO₆ crystallizes with the bixbyite structure (Bayer, 1967; Hostachy & Coing-Boyat, 1968), whereas Mg_3TeO_6 and Mn_3TeO_6 are isostructural and belong to a new structure type (Bayer, 1967; Kasper, 1968; Newnham, Dorrian & Meagher, 1970). Subsequent syntheses of isostructural compounds M_3SbO_6 were further evidence for the analogy of the crystal chemistry of Te⁶⁺ and Sb⁵⁺ (Kasper, 1968; Bayer, 1968).

A recent paper by Newnham, Dorrian & Meagher (1970) describes the crystal structure of Mg₃TeO₆ as determined from powder data. Powder data can only show the reflexion symmetry of the space group $R\overline{3}m$ but not of $R\overline{3}$. The similarity of the structure to rhombohedral Y₆UO₁₂ was used as a guide line in that structure investigation. Single-crystal structure determination which was carried out at about the same time revealed some significant differences in atomic positions (Schulz & Bayer, 1970). In particular the Te-O distance was found to be quite normal (1.91 Å) as compared with the extremely short distance given by Newnham *et al.* (1970) (1.75 Å).

The details of the structure determination and the features of the Mg_3TeO_6 structure will be discussed in the following.

Experimental

Polycrystalline Mg₃TeO₆ can be prepared by heating a mixture 3MgO.1TeO₂ in air at 650-800°C. DTA/TGA runs proved that quantitative oxidation Te⁴⁺ \rightarrow Te⁶⁺ occurs in the range 620-750°C (heating rate 2°C.min⁻¹). Mg₃TeO₆ starts to decompose by volatilization of TeO₂ above 950°C. No transformation was found up to this temperature. Lattice constants were determined from Guinier powder photographs (Cu K α radiation silicon standard):

Mg₃TeO₆: $a_{hex} = 8.615 \pm 0.003$, $c_{hex} = 10.315 \pm 0.003$ Å, Z = 6; $a_R = 6.05$ Å, $\alpha_R = 90^{\circ}50'$, Z = 2; $D_x = 4.46$ g.cm⁻³, $D_{exp} = 4.33$ g.cm⁻³.

For synthesis of single crystals polycrystalline Mg_3TeO_6 was mixed with an excess of NaCl or Na_2SO_4 and heated in a covered alumina crucible up to 950 °C for about 100 hours. After slowly cooling (about 5 °C.hour⁻¹) to room temperature platelet-like single crystals of hexagonal habit up to 1 mm in diameter could be leached out with hot water. The crystals grown from NaCl flux had more pronounced hexagonal habit and showed less twinning. Single crystals of about 0.2 mm in size were used for the crystal structure determination.

The reflexion intensities were measured with an off line single-crystal diffractometer (Siemens). The Nbfiltered radiation was generated by a Mo fine-focus tube at 50 kV. The diffractometer selects measuring time and weakening filter in order to measure the peak intensity of the reflexions with approximately the same count rate (40000 counts) and to get a dead-time loss of less than 1%, Table 1. Observed and calculated structure factors

En 6 Kn 0 - He 1 Kn 5 He 2 Kn 4 He 3 0 199 154 - 19 10 - A - 15 54 56 - 14 3 19 19 - 16 11 110 - 13 18 15 - 11 4 19 19 - 13 29 23 - 15 18 13 - 4	53 52 9 .20 9 .15 6 5 - 12 6 5 - 12	6 - 2 - 4 7 Ke 10 - 4 10 Ke 8 5 4 0 16 18 7 88 93 9 8 10 40 46 40 7 4 9 8 4 8 4 9 10 5 7
9 5 3 -10 60 59 -7 10 14 -5 12 19 19 -7 0 0 -4 54 50 -2 15 11 10 -4 12 12 -1 5 3 1 10 12 12 -1 50 59 2 40 45 4 1 2 5 3 5 13 15 7 wa 5 Ka 1 5 - 0 6 7 8 5 10	8 7 -6 24 27 -7 80 79 -3 4 5 -4 78 76 -3 53 147 -1 77 74 -3 5 3 2 20 17 6 48 7 5 102 101 6	23 21 13 14 2 6 6 HW 10 KW 1 13 14 5 85 83 74 69 8 69 68 -12 5 4 23 21 11 95 55 -9 5 4 5 6 14 89 92 -6 99 98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2* 25 8 57 58 12 5 Ke 4 54 4 Ke 12 79 81 5 6 2 80 79 -2 63 64 -16	1 10 11 -12 70 76 <th77< th=""> 76 76 76<!--</td--></th77<>
20 2 3 -17 77 85 -14 46 45 -3 -14 16 15 -11 16 18 3 He R Ke 2 -11 3 2 -6 25 25 3 -4 13 15 -5 83 81 4 1 4 7 -2 14 13 -2 74 71 9 4 110 137 1 4 4 1 17 18 12	5 7 4 25 25 -10 91 91 -7 4 25 K 0 -4 4 25 K 0 -4 -1 2 84 2 91 92 2 54 53 5 19 19 2	46 95 -5 66 67 HE 10 KH 2 41 35 -2 5 0 42 80 1 93 91 -13 75 76 78 80 4 9 7 -10 8 0 8 7 7 86 86 -7 69 56 67 69 10 69 66 -4 91 91
7 12 12 4 53 51 4 95 97 10 33 29 7 7 16 7 47 45 Ma 3 13 43 42 13 5 6 10 14 16 16 3 6 13 15 13 95 67 -10 19 2 4 16 14 15 16 84 40 -41	8 69 69 8 K= 1c 11 93 91 11 14 31 31 14 66 66 17 56 55 22 17 56 55 H# 5 K* 1	70 71 13 64 70 -1 65 67 13 12 16 11 11 2 84 83 9 8 5 5 6 54 6 9 8 8 8 83 103 104 6 10 1 11 2 84 83 103 104 6 10 1 11 7 74 11 9 74
0 0 0 10 1 10 1 15 16 15 5 5 3 2 3 12 11 10 15 16 15 5 5 3 2 3 12 11 10 12 11 7 8 9 33 2 -4 11 10 -6 54 10 -6 54 11 10 11 11 11 11 12 11 12 -6 45 13 -6 54 13 -6 54 14 15 16 15 11 10 -1 6 15 10 -6 54 16 -6 54 16 16 15 11 10 -1 6 16 16 16 16 10 11 11 11 11 11 11 11 11 11 11 11 11	23 22 -17 78 75 -11 20 17 -14 33 21 -8 34 32 -11 18 17 -5 18 18 -8 16 9 -2 -5 11 10 1 5 11 10 1	V3 V1 -12 82 84 KR 10 KR 3 13 15 -9 71 68 0 0 -6 7 5 -11 13 16 9 8 -3 80 78 -8 70 64 64 64 0 71 68 -5 88 93 25 22 3 65 61 -2 0 5 63 65 6 0 1 16
15 17 15 0 7 0 5 4 10 19 3 30 24 3 35 37 -8 10 19 3 30 24 3 35 37 -8 10 19 4 50 59 45 -5 -1 10 10 274 71 12 26 18 1 2 76 76 15 48 15 18 19 4	29 27 4 18 17 10 63 62 7 7 74 76 13 53 147 10 82 70 5 3 147 10 82 70 5 3 13 20 17 Me 94 95 16 66 67	13 14 0 40 68 4 17 17 20 21 12 63 70 7 5 6 108 109 15 95 95 10 112 169 6 24 6 24 8 Xe 3 He 10 Ke 4
5 76 76 7 6 0 H4 1 K8 6 H8 2 K8 9 10 14 4 2 14 4 2 -16 5 3 -13 16 9 H8 3 17 89 79 -13 74 71 -13 7 5 -10 0 8 -7 16 18 -6	53 147 10 63 64 -12 43 76 -9 5 84 2 -15 84 2 -3 5 85 -15 76 75 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
He 6 Ke 5 -7 6 4 -4 25 25 -3 1 159 156 -1 121 07 5 16 18 3 4 199 94 2 12 12 18 6 1 56 6 7 2 45 55 51 11 4 5 6 10 55 53 51 11 4 87 85 He 3	5* 53 -12 72 72 75 6 88 80 -9 15 13 9 8 7 -3 9 6 12 57 52 0 5* 50 5 3 89 93 M 1 K* 13 A 82 79 1 0 0 0 0 0 0 1	9 11 5 83 60 9 6 2 70 64 8 5 0 8 7 11 8 7 He 19 Ke 5 14 12 11 6 2e 7 8 Ke 4 -4 76 76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 2 12 66 66 -18 80 76 15 9 6 -7 18 6 2 -6 80 -1 5 9 6 -7 18 6 2 -6 57 56 -10 -1 57 56	67 69 -14 68 70 2 75 76 65 65 -11 8 4 5 0 0 28 21 -8 64 70 8 57 52 70 66 -5 16 18 13 16 -2 19 19 We 10 Ku 6 0 1 93 96
3 11 12 -40 9 19 1 11 7 4 6 7 -5 9 6 4 8 1 7 6 7 -2 27 26 7 60 78 10 12 6 7 -10 27 26 7 60 78 10 15 156 156 6 0 0 13 5 14 15 156 156 4 6 0 13 5 14	32 3n -16 82 50 8 70 46 -13 17 15 11 56 56 -10 17 15 14 14 -7 4 2 He 61 56 -4 86 70 9 1n -1 18 17 -11	0 0 4 69 66 -5 65 65 6 4 7 71 68 -2 8 6 6 e 13 93 91 4 97 94 67 69 50 8 4 5 5 51 1 5 45 07 69 50 8 4 5 5 51 1 5 51 7
He 0 Ke 7 13 10 7 13 15 16 16 17 18 16 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	xx 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	03 03 03 22 22 -12 7 4 0 73 68 25 22 -9 68 70 25 25 -5 65 61 Hm 11 Km 0 78 75 -33 01 80 72 69 0 134 134 2 0 6 78 75 -57 20
14 100 96 -6 5 3 6 14 16 -6 17 76 76 -3 77 71 9 34 32 -3 Ma 0 Xa B 3 27 24 Ma 2 Xa 12 18 0 Xa B 3 27 24 Ma 2 Xa 12 1 7 4 9 121 9 1 7 4 9 121 97 -7 89 93 9	23 20 Hm 5 Ke 4 He 66 46 34 32 -17 5 0 He 63 62 -14 78 75 -6 45 43 -11 91 85 -3 2 3 -8 16 14 9	6 7* 9 6 6 10 8 10 10 12 12 12 13 13 12 He 11 Km 1 63 64 6* 8 Ke 6 68 5 0 72 69 6* 8 Ke 6 68 5 0 62 80 - 5 19 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 55 56 56 3 35 37 -2 62 61 6 54 53 1 86 79 4 4 16 9 Ke 2 7 25 23 He 10 78 75 8 7 13 8 1 -1	• 11 -10 03 01 -2 53 52 70 64 -7 9 11 1 53 52 11 11 -4 22 23 4 103 16 -1 53 52 7 5 0 6 -10 2 75 76 10 0 0 5 76 76 10 0 0 5 76 71 0 1 1 -2 3 2 7 5 0 1 1 -2 3 2 7 5 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76 75 18 68 87 -1 2 1 2 14 16 HE 5 RE 5 5 32 30 60 47 -15 16 9 ME 61 62 -12 25 23	83 82 11 68 70 45 52 63 64 -49 53 52 20 21 46 60 -49 53 52 20 21 46 60 7 -40 6 -3 -3 -3 7 74 6 40 163 6 76 74 -7 74 6 40 163 6 76 74 -7 74 19 3 13 14 -5 17 13 13 14
15 2 4 1 4 2 5 5 5 He 0 Ke 10 - 4 8 87 45 9 23 24 8 2 5 - 5 2 27 21 10 1 10 1 2 5 - 5 2 72 12 10 10 14 5 5 8 - 1 46 45 18 14 14 5 7 8 - 1 15 108	57 56 -0 17 15 1 61 56 -6 18 17 4 26 26 -3 19 19 7 70 66 5 11 18 17 13 15 3 18 17 13 71 69 6 47 46 16 0 17 18	74 732 82 84 6 169 109 13 16 1 19 19 9 0 6 10 0 4 03 06 0 0 7 57 52 H4 11 Km 3 9 55 53 →= 8 Km 8 -16 0 0
11 5 4 7 6 14 4 4 4 14 4 1 14 4 1 14 4 1 14 1 1	. K# 3 12 34 32 Ha 15 65 65 45 49 94 45 40 66 He 5 Ke 6 12 10 12 13 01 00 46	7 i* 16 60 66 75 76 3 13 111 0 0 70 64 0 95 95 2 103 103 22 22 3 68 75 5 2 103 103 81 78 6 80 79 4 95 95 25 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 17 -10 0 2 -3 29 27 -7 81 79 0 09 44 -40 90 80 .3 45 43 -1 54 53 4 35 37 2 16 14 12 3 3 5 90 80 15 14 12 5 90 16 14	83 82 PF 8 Km 9 HF 11 Km 4 108 104 78 64 m1 6 9 m8 9 6 14 15 2 83 80 m5 0 0 72 69
B 18 18	53 247 11 83 80 He 14 54 50 K# 4 - 15 - 16 76 75 - 15 K# 7 - 13 76 75 - 14 - 17 - 12 71 10 - 14 93 91 - 7	7 2 3 108 106 7 9 31 8 7 9 83 81 Her 11 Ke 5 5 4 12 9 11 49 06 15 89 866 53 52 9 10 3 8
He 0 Ke 13 2 12 14 14 8 9 -12 5 37 37 11 18 16 -9 -9 2 13 15 8 111 10 -8 6 7 -46 9 -46 -8 -7 -46 9 -46 -8 -7 -46 9 -46 -8 -7 -46 -6 -7 -6 9 10 10 10 10 10 10 -10 10 10 -7 -6 9 -7 -6 9 10	57 56 -11 18 18 -4 26 23 -8 16 9 -1 73 60 -5 25 23 2 8 7 -2 9 9 5 61 56 1 73 69 8 26 26 4 108 109 11	64 67 ++ 9 R+ 1 6 85 83 76 75 ++ 9 R+ 1 6 85 83 76 75 13 53 52 6 65 61 5 + -10 7 5 57 77 -+ 7 13 12 HH 12 26 0 10 -4 ++ 76 76
μ 0 k 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	10 0 10 10 10 10 17 32 32 13 47 44 14 14 14 16 14 14 16 14 He 5 Ke 8 -14 -14 14 16 17 18	134 134 76 76 74 3 0 134 134 2 90 103 6 103 104 7 7 3 8 10 8 10 10 7 7 3 8 10 8 12 75 55 53 14 8 76 12 15 76 10 14 76 14 176 12 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-9 17 15 -8 20 21 -6 18 10 -5 99 96 -3 33 82 -5 25 25 6 11 11 1 86 57 3 74 71 4 25 23 4 11 11 7	13 16 ++ 9 KF 216 76 76 81 787 9 9 12 12 -14 69 66 -4 9 0 43 42 -11 53 51 -1 79 76 14 158 66 67 2 182 181 198 184 -5 95 55 8 88 81
He 1 Ke 1 13 60 63 -66 3 3 -1 -16 99 07 19 7 1 3 16 12 2 7 -16 99 07 19 64 -1 12 12 2 7 -15 5 8 19 6 18 10 11 -12 19 19 He 2 Ke 2 9 30 30 14 -12 27 24 23	80 43 0 43 80 10 66 67 12 16 14 16 32 32 16 14 16 16 14 14 5 KH 9 Ha 66 66 53 51 -10 54 53 -15 29 27 -7 96 89 -15	00 032 00 08 11 0 0 05 59 1 85 88 7 x - 4 7 68 75 10 0 98 73 14 43 82 13 71 68 -2 9 6 44 80 62 13 71 68 -2 9 6
-6 32 30 -18 49 93 15 113 113 -3 9 6 -15 80 79 18 18 18 18 He 4 - 2 3 -12 7 8 1 3 18 18 -6 9 6 He 3 Ke 4 -14 - 6 148 164 -6 68 70 16 7 -11 - 12 12 12 - 12 -12 13 -16 18 7 -1 -2 12 -12 12 -12 13 -16 18 7 -1 -2 12 -12 12 -12 13 7 -1 -2 12 -12 12 -12 12 -1 -2 12 -12 12 -1 -2 12 -	4 83 82 -9 K= 4 -1 13 14 -6 80 70 5 60 50 6 47 97 8 55 53 3 76 75 11 80 79 6	5 4 70 9 XH 3 4 70 77 5 4 70 9 XH 3 4 70 77 70 70 412 78 71 69 66 49 9 11 He 12 XH 3 66 67 46 3 81 49 553 112 189 -6 46 45
15 18 18 3 16 17 -16 63 19 42 4 18 18 18 3 16 13 -7 83 19 42 1 18 10 12 6 13 13 -7 83 7 8 1 WH 1 KH 2 12 13 15 -1 9 6 7 H 1 KH 2 12 3 15 -1 9 6 7 H 9 6 18 87 85 5 5 5 5 10 1 -19 9 6 18 87 85 5 5 5 5 13 13	20 7 Jm 5 Ke 10 12 25 25 15 17 15 -8 9 9 81 56 -5 74 76 He 89 84 -2 102 109 14 9 4 82 59 -13	5 4 8 7 3 40 40 45 5 4 8 7 7 0 46 41 74 73 6 76 74 3 8 0 7 \hat{r}_{1} 5 12 76 74 H 12 K \hat{r}_{1} 4 12 K \hat{r}_{2} 4
-10 9 6 8 57 10 1 7 10 1 7 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>	57 56 7 93 9110 K= 7 µm 5 K= 117 -7 -7 -7 -7 -7 -7 -7 -7 -7	53 52
5 5 6 -7 11 6 -17 20 20 -4 6 60 50 -4 1 14 2 -1 -3 -1 11 6 8 -1 4 2 -1 -3 -1 14 5 6 -1 9 8 -11 63 15 -3 -1 14 5 6 2 16 17 -4 13 13 3 -1 15 6 7 16 17 -4 13 13 3 -1 16 5 7 71 -5 61 15 6 -2 14 15 6 6 -2 14 15 6 6 -2 14 15 6 6 -2 14 15 6 1 5 6 1 16 6 -2 14 15 6 <td>53 56 3 93 91 11 25 23 6 56 54 14 25 23 6 56 54 14 36 67 µm 6 Km 0 Km 32 32 14 14 3 13 11 -8</td> <td>13 13 13 14 1 0 0 108 134 11 13 11 7 0 0 7 \bar{x}_{0} 6 \bar{x}_{0} 10 1 7 0 7 \bar{x}_{0} 6 \bar{x}_{0} 1 17 \bar{x}_{0} 0 7 \bar{x}_{0} 6 \bar{x}_{0} 77 $-\bar{x}_{0}$ 6 0</td>	53 56 3 93 91 11 25 23 6 56 54 14 25 23 6 56 54 14 36 67 µm 6 Km 0 Km 32 32 14 14 3 13 11 -8	13 13 13 14 1 0 0 108 134 11 13 11 7 0 0 7 \bar{x}_{0} 6 \bar{x}_{0} 10 1 7 0 7 \bar{x}_{0} 6 \bar{x}_{0} 1 17 \bar{x}_{0} 0 7 \bar{x}_{0} 6 \bar{x}_{0} 77 $-\bar{x}_{0}$ 6 0
H= 1 K= 3 1 44 46 1 18 16 16 12 H= 1 K= 3 14 145 161 4 56 55 15 -17 24 23 7 A3 78 7 25 25 -17 24 23 H= 2 K= 4 13 82 84 -14 15 2 -12 -22 -23 49 46 -13 -14 15 6 -17 27 23	93 91 6 85 82 85 53 51 9 11 11 82 53 51 52 842 43 11 82 54 55 17 15 4 18 83 40 7 20 20 - 10	16 18 46 14 14 4 0 0 0 16 18 45 14 10 0 0 17 71 12 51 14 10 0 0 18 83 1 99 98 0 95 95 4 3 4 80 80 7 109 109 Ma 13 Kg 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 1. PF 6 K4 1 13 57 55 87 93 -16 74 74 H4 20 17 -13 83 82 88 88 -10 20 21 -9 92 161 -7 5 6 -6 17 15 -4 17 13 -3	vv 00 10 70 71 70 70 70 71 70 7
IJ 9 0 4 5 3 -3 94 95 11 16 9 6 7 13 15 6 83 76 14 19 8 7 13 77 71 3 23 22 Hu 1 Kr 4 16 27 18 9 5 3 Hu 1 Kr 4 16 27 18 9 5 3 Hu 1 Kr 4 16 27 18 9 5 3	0 7 +1 74 60 6 74 75 2 60 59 3 5 12 12 6 6 KE 9 13 14 11 74 71 X4 25 25 14 31	⁶ 60 66 0 70 77 -2 0 8 14 14 3 112 10 ⁰ 1 10 6 80 7 ⁵ 6 60 67 7 Στ 8 ⁷ 9 9 10 κ4 16 κ _m 0 7 Στ 8 ¹ 9 9 10 μ4 16 κ _m 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ - + - + - + + - + - + - + -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5 70 71 Ha K= 10 -2 76 80 1 93 91 -5 90 89 4 47 69 -2 66 67 7 73 71 11 76 75 10 42 43 4 16 6 13	7 is 9 +s 9 Ks 4 13 13 -s2 19 22 83 82 1 15 14 15 16 7 5 -s 10 Ks 0
· 15 22 22 14 19 14 9	74 75 16 13 11 '	1 73 64

The crystal investigated was shaped like a sphere with a radius of about 150μ . All reflexions with $1 \ge 0$ up to $\theta = 40^{\circ}$ were measured.

The absorption correction for a crystal sphere was applied to the 1195 observed, unweighted, non-symmetry equivalent intensity mean values derived from about 4000 single measurements. An intensity mean value was considered as 'observed', if its intensity was larger than its threefold standard deviation. Their weights were usually calculated from the impulse rates. In cases where twice the estimated standard deviation of the symmetry equivalent reflexions was larger than the standard deviation of the counting statistics the e.s.d. was used as weight.

Thermal expansion measurements were carried out on a heating diffractometer with Cu Ka-radiation (Philips unit, MCR high temperature X-ray furnace). The temperature was calibrated for the range 20-900 °C; polycrystalline α -Al₂O₃ was used as a standard. The 2θ range 19 to 50° was scanned at 200°C intervals from 20°C to 820°C and back. The positions of 10 reflexions in this range were measured and used for calculation of lattice constants at the various temperatures. Satisfactory and reproducible results (maximum deviation in lattice constants $\pm 3\%$) were obtained when two or three adjacent reflexions were used for calculation of lattice constants and plotted versus temperature, e.g. 110, 012; 122, 104; 312, 214. The results of the measurements are shown in Fig. 1. The average linear thermal expansion coefficients between 20 and 820°C are

$$\beta_a = 7 \cdot 3 \pm 0 \cdot 2 \times 10^{-6} \,^{\circ}\text{C}^{-1} \beta_c = 10 \cdot 5 \pm 0 \cdot 3 \times 10^{-6} \,^{\circ}\text{C}^{-1} .$$

S t X

Extinction parameter g = 8.6 (3) × 10⁻⁶

Table 3. Magnitudes and direc

	Te(1)			Te(2)		
Length of the main axes (Å) Angle with	0.0582 (2)	0.0582 (2)	0.0734 (2)	0.0695 (1)	0.0605 (1)	0.0697 (2)
axis 1 (°)	90	90	0	90	90	0
axis 2 (°)		_	90	-		90
axis 3 (°)	—		90	—	_	90

The numbers in brackets are the standard deviations in units of the last digit.

The anisotropy of thermal expansion (1/1.44) is quite pronounced and points to a stronger bond within the layers parallel to (0001) as compared with the *c* axis which runs perpendicular to these layers.

Mg₃TeO₆ has a reasonably close packed structure with a packing density of 62%. This in comparison to the less dense structure of MgO which has P=52%and a rather high thermal expansion of about 13×10^{-6} °C⁻¹. Probably the small, high valent tellurium cations exert an inhibiting effect on the thermal motion of Mg²⁺ and O²⁻ especially in the **a** direction.

Structure determination

The diffraction pattern points to the space groups R3 or $R\overline{3}$. The true space group was determined by the centre test of Karle, Dragonette & Brenner (1965). For this and all further calculations the ionic states Te⁶⁺, Mg²⁺, O²⁻ were assumed. The scattering curves for Te⁶⁺ and Mg²⁺ were taken from Thomas & Umeda (1957), and those for O²⁻ from Tokonami (1965). The following results were obtained: average $|E|^2=1.013$, average $|E^2-1|=0.945$, average |E|=0.808, which means that the structure is centrosymmetric.

The hexagonal elementary cell contains 6 Te atoms. In the space group $R\overline{3}$ they can occupy the sixfold atomic position 6(c) or the two threefold atomic positions 3(a) and 3(b). A Patterson synthesis should show in the first case two strong Te-Te maxima in $(0, 0, \pm 2z)$ (and the corresponding symmetry equivalent maxima) and in the second case one Te-Te maximum in $(0, 0, \frac{1}{2})$. The Patterson synthesis shows a maximum in $(0, 0, \frac{1}{2})$ and therefore the Te atoms were put into the atomic positions 3a and 3b. There are always two Te atoms with the coordinates (x, y, z) and $(x, y, z + \frac{1}{2})$, for the Te atoms therefore the **c** direction is divided into equal halves. They do not contribute to the intensity of the reflexions with l=2n+1.

A structure factor calculation using only reflexions with l=2n and the Te atoms lead to an unweighted R value of 0.19. The corresponding Fourier synthesis showed 6 maxima around each Te atom, altogether 18 maxima, occupying one general position 18(f). The distance to the Te atoms equals 1.9 Å, which corresponds to the normal Te-O distances (Table 5). A Fourier synthesis with l=2n reflexions is equal to a 'projection' of the structure into a subcell with the coordinates (a,b,c/2). Therefore the subcell should contain 36 O maxima around the Te atoms, but only 18 could be found. From this follows that also the O atoms halve (approximately or exactly) the c direction. The Fourier synthesis revealed 18 other maxima in the general position 18(f). They were interpreted as Mg positions. A least-squares refinement using l=2n reflexions and the Te and O atoms with an atomic position multiplier equal to 2.0 and the Mg atoms with a multiplier equal to 1.0 resulted in R=0.08. The scale factor, the atomic positions and the individual temperature factors were refined.

The Mg atoms were used to determine the signs of the reflexions with l=2n+1. A corresponding structure factor calculation resulted in R=0.32. The Fourier synthesis contained Mg maxima and besides the O positions (determined from the l=2n reflexions) weak maxima showing the O atoms do not exactly halve the c direction. The O atoms were shifted in the direction of these maxima. In this manner they fall into two general positions 18(f) with different (x, y, z) coordinates. A least-squares refinement with the Te and Mg atoms and the O atoms in their new position using only l=2n+1 reflexions and all reflexions lead to R values of 0.11 and 0.07 respectively. The normal least-squares refinement procedure was then started with individual weights including the secondary extinction parameter g (Zachariasen, 1963; Larson, 1967). The Te atoms were corrected for anomalous dispersion with the values given by Cromer (1965). The equations used for the refinement are described in Roof, Larson & Cromer (1968). The results are listed in Tables 1 to 4. The final agreement factors were equal to unweighted R=0.048, weighted R=0.041, Hamilton's R=0.052, (Hamilton, 1965).

Table 4. Interatomic distances and angles

The numbers in brackets are the standard deviations in units of the last digit.

Te(1) Octahedron	
$Te(1) - O(1^{i})$	1·912 (3) Å
$O(1^{i}) - O(1^{i})$	2.603(5)
$O(1^{i}) - O(1^{ii})$	2.801 (5)
$O(1^{ii}) - Te(1) - O(1^{iii})$	85·8 (1)°
$O(1^{ii}) - Te(1) - O(1^{iv})$	94·2 (1)
Te(2) Octahedron	
$Te(2) - O(2^i)$	1·914 (3) Å
$O(2^{i}) - O(2^{i})$	2.813(5)
$O(2^{i}) - O(2^{ii})$	2.596 (4)
$O(2^{ii}) - Te(2) - O(2^{iii})$	94·6 (1)°
$O(2^{ii}) - Te(2) - O(2^{iv})$	85·4 (1)
Mg Óctahedron	

Orthogonal reference system: axis 1 c axis; O(1)			; axis 2 a_1 axis; axis 3 a_2^{+} axis. O(2)			Mg		
0.064 (9)	0.088 (12)	0.103 (13)	0.078 (8)	0.081 (19)	0.090 (9)	0.077 (11)	0.084 (4)	0.094 (3)
75 (16) 45 (15) 49 (13)	148 (30) 61 (22) 101 (30)	117 (33) 121 (25) 44 (12)	69 (54) 50 (>90) 47 (>90)	115 (56) 41 (>90) 120 (>90)	33 (42) 84 (64) 122 (32)	91 (25) 143 (25) 53 (25)	73 (21) 126 (28) 139 (26)	17 (20) 81 (22) 76 (20)

Table 4 (6	5711.)
MgO(1 ^v)	2·022 (4) Å
$Mg \longrightarrow O(2^{viii})$	2.049 (3)
$Mg - O(2^{vi})$	2.124(4)
$Mg - O(1^{ii})$	2.130 (5)
$Mg \longrightarrow O(2^{vii})$	2.159 (4)
$Mg \longrightarrow O(1^i)$	2.278 (4)
$O(2^{vii}) - O(2^{vi})$	2·596 (4) Å
$O(1^{i}) - O(1^{ii})$	2.604(5)
$O(2^{vii}) - O(2^{viii})$	2.710 (7)
$O(1^v) - O(1^{ii})$	2.712(9)
$O(1^{i}) - O(2^{viii})$	2.775 (5)
$O(1^{ii}) - O(2^{vi})$	2.775 (6)
$O(1^{v}) - O(2^{v \Pi})$	3·016 (5) Å
$O(1^{i}) - O(2^{v_{i}})$	3.182 (6)
$O(1^{v}) - O(2^{vi})$	3.329 (5)
$O(1^{v}) - O(2^{vii})$	3.342 (5)
$O(1^{i}) - O(2^{vii})$	3.576 (5)
$O(1^{ii}) - O(2^{viii})$	3.661 (6)
$O(1^{i}) - Mg - O(1^{v})$	144·8 (2)°
$O(2^{vii})-Mg - O(2^{vi})$	74.6 (1)
$O(2^{vii})$ -Mg — $O(2^{viii})$	80.2 (2)
$O(1^{11}) - Mg - O(2^{v1})$	81.4 (1)
$O(1^{ii}) - Mg - O(2^{viii})$	122.3 (2)

The structure determination was carried out with the following computer programs: (1) Symbolic Addition Procedure of the NRC of Canada by S. R. Hall; (2) Fourier program made available by R. Jacobson, Department of Chemistry, Iowa State University; (3) Los Alamos Crystal Structure least-squares program *GENLES* by A. C. Larson; (4) Function and Error Program by Busing & Levy.

Discussion

The structure of Mg_3TeO_6 is built up from TeO_6 and MgO_6 octahedra. With respect to the oxygen arrangement, the structure definitely contains elements of hexagonal close packing with strongly distorted oxygen layers parallel to (0001). This explains the reasonably high packing density of 62%.

The Te⁶⁺ ions show a very regular, octahedral oxygen surrounding [Fig. 2(*b*)] with Te–O=1·91 Å (Table 4). This is in good agreement with Te–O distances observed in other Te-containing oxide compounds, but deviates strongly from the 1·75 Å given for Mg₃TeO₆ by Newnham *et al.* (1970). Table 5 lists the Te–O distances reported so far in the literature.

The MgO_6 octahedra show a strong distortion [Fig. 2(b)] which is reflected by the variation of the Mg–O distances between 2.02 and 2.28 Å. The mean value of 2.13 Å is close to the values found for octahedrally coordinated magnesium in other structures. In addition to the octahedral holes which are occupied by Mg there exists an identical number of similar structural voids. These holes could be filled by shifting the Mg atoms from z to $z + \frac{1}{2}$. The calculated Mg–O distances for this hypothetical arrangment vary between 1.89 and 2.45 Å with a mean value of 2.17 Å.

Each TeO₆ octahedron shares edges with six MgO₆ octahedra but none with other TeO₆ octahedra. The shared edges of the TeO₆ octahedra have somewhat shorter O–O distances (2.60 Å) than the non-shared edges (2.80 Å). This is due to the high-valent tellurium which has the tendency to keep as far as possible from the Mg²⁺ ions.

Each of the distorted MgO₆ octahedra shares one edge with a Te(1)O₆ octahedron and another edge with a Te(2)O₆ octahedron, and 4 edges with other MgO₆ octahedra [Fig. 2(*b*)]. The two shortest O–O distances (2·60 Å) of the MgO₆ octahedra correspond to the edges shared with TeO₆ octahedra. The 4 edges which are shared with other MgO₆ octahedra have O–O distances between 2·71 and 2·78 Å. The 6 non-shared edges vary between 3·02–3·66 Å.

Each oxygen is surrounded by one Te⁶⁺ and three Mg²⁺ ions in the form of a distorted tetrahedron. This satisfies Pauling's second rule, since the charge of O²⁻ is equal to the sum of the electrostatic bond strengths of O-Te and O-Mg: $(6/6+3 \times 2/6)=2$.

Table 5. Te-O distances for various compounds

Compound	Te-O (Å)	Reference
Mg ₃ TeO ₆	1.75	Newnham, Dorrian & Meagher (1970)
Mg ₃ TeO ₆	1.92	Schulz & Bayer (1970)
Cu ₃ TeO ₆	1.908	Hostachy & Coing-Boyat (1968)
Hg ₃ TeO ₆	1.98	Falqui (1963)
KTeO(OH)5H2O	1.83-1.93	Raman (1964)
$KTeO_2(OH)_3$	1.84–1.89	Lammers & Zemann (1965)
$K_4[Te_2O_6(OH)_4](H_2O)_x$	1.86-2.03	Lindquist & Lundgren (1966)
$Ag_2TeO_2(OH)_4$	1.85-1.997	Fischer (1969)

Table 4 (cont.)

. .

.

• •

tions of the thermal main axes

. .

0.4

Table 3 embodies magnitudes and directions of the main axes of the thermal vibration ellipsoids. The small and large main axes of the rotation ellipsoid of the Te atoms are perpendicular and parallel to the c axis respectively. The smallest main axis of the Mg at-

oms is approximately parallel to the direction Mg–O(1^{v}) [cf. Fig. 2(b)] and nearly perpendicular to the plane O(1^{ii})–O(2^{vi})–O(2^{vii})–O(2^{viii}). This plane contains 4 Mg–O bondings. The intermediate and the largest main axes of the Mg atoms are nearly parallel and perpen-

Fig. 2. (a) Projection of the atoms down [0001]. The given numbers are the approximate z coordinates. (b) Projection of parts of the structure down [0001].

dicular respectively to $O(2^{vii})-O(2^{vi})$. The thermal motion of the O atoms, especially of O(2), is nearly isotropic. The assumption of a preferred expansion of the thermal vibration ellipsoids of the Te atoms in the directions of the largest main axes by heat treatment may explain the stronger temperature dependence of the *c* axis as compared with the *a* axis.

References

- BAYER, G. (1969). Fortschr. Min. 46, 42.
- BAYER, G. (1967). Z. Kristallogr. 124, 131.
- BAYER, G. (1968). Naturwissenschaften, 55, 33.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- FALQUI, M. T. (1963). Ric. Sci. Rend. A3, 627.
- FISCHER, R. (1969). Mh. Chem. 100, 1809.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502.
- HOSTACHY, A. & COING-BOYAT, J. (1968). C. R. Acad. Sci. Paris, 267, 1435.

- KARLE, I. L., DRAGONETTE, K. S. & BRENNER, A. S. (1965). Acta Cryst. 19, 713.
- KASPER, H. (1968). Z. anorg. allg. Chem. 356, 329.
- LAMMERS, P. & ZEMANN, J. (1965). Z. anorg. allg. Chem. 334, 225.
- LARSON, A. C. (1967). Acta Cryst. 23, 664.
- LINDQUIST, O. & LUNDGREN, G. (1966). Acta Chem. Scand. 20, 2138.
- NEWNHAM, R. E., DORRIAN, J. F. & MEAGHER, E. P. (1970). Mat. Res. Bull. 5, 199.
- NEWNHAM, R. E. & MEAGHER, E. P. (1967). *Mat. Res. Bull.* **2**, 549.
- RAMAN, S. (1964). Inorg. Chem. 3, 634.
- ROOF, R. B., LARSON, J. A. & CROMER, D. T. (1968). Acta Cryst. B24, 269.
- SCHULZ, H. & BAYER, G. (1970). Naturwissenschaften, 57, 393.
- THOMAS, L. H. & UMEDA, K. J. (1957). J. Chem. Phys. 26, 239.

TOKONAMI, M. (1965). Acta Cryst. 19, 486.

ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.

Acta Cryst. (1971). B27, 821

Structures of α -Mn₂O₃, (Mn_{0.983}Fe_{0.017})₂O₃ and (Mn_{0.37}Fe_{0.63})₂O₃ and Relation to Magnetic Ordering

BY S. GELLER

Science Center, North American Rockwell Corporation, Thousand Oaks, California, U.S.A.

(Received 13 March 1970)

The crystal structures of α -Mn₂O₃ and of (Mn_{1-x}Fe_x)₂O₃, x=0.017 and 0.63 have been refined by least-squares calculations from three-dimensional X-ray diffraction data obtained with a Buerger– Supper–Pace–Picker diffractometer. At 25 °C, crystals of α -Mn₂O₃ belong to space group *Pcab* (D_{2h}^{15}) with a=9.4157 (3), b=9.4233 (3), c=9.4047 (3) Å; (Mn_{0.983}Fe_{0.017})₂O₃ and (Mn_{0.37}Fe_{0.63})₂O₃ belong to *Ia3* (T_h^7) with lattice constants 9.4146 (1) and 9.4126 (3) Å respectively. Interatomic distances and angles in (Mn_{0.983}Fe_{0.017})₂O₃ are equal to the analogous average distances and angles in α -Mn₂O₃. There appears to be significantly less distortion of the oxygen polyhedra about the 24(*d*) sites in (Mn_{0.37}Fe_{0.63})₂O₃ than in (Mn_{0.983}Fe_{0.017})₂O₃. Evidence is presented in support of the suggestion that the antiferromagnetic ordering temperatures depend on the allowed distortion of the Mn³⁺ ion surroundings. The results on α -Mn₂O₃ differ in minor respects from those of Norrestam (*Acta Chem. Scand.* (1967). **21**, 2871].

Introduction

This work was undertaken to gain further insight into the crystallographic and magnetic behavior of what appears to be a unique system, $(Mn_{1-x}Fe_x)_2O_3$. Early investigators (Zachariasen, 1928; Pauling & Shappell, 1930) believed α -Mn₂O₃ to be cubic and to have the same crystal structure as the mineral bixbyite ($x \simeq 0.5$). This conclusion was drawn on the basis of X-ray powder diffraction photography with Fe K α radiation. Our own work indicates that the deviation from cubic symmetry in such photographs is barely detectable, and perhaps only if one already knows that the Mn₂O₃ is not cubic. Further, less than one cation % Fe³⁺ impurity would make the compound cubic at room temperature (Grant, Geller, Cape & Espinosa, 1968).

Some structural work on α -Mn₂O₃ has also been done with neutrons both at room temperature (Fert, 1962;* Hase, 1963) and at very low temperature (Cable, Wilkinson, Wollan & Koehler, 1957). No deviation from cubic symmetry was noted by these investigators but the magnetic structure at low temperatures appeared to be very complex.

^{*} In a previous paper (Geller, Romo & Remeika, 1967) we pointed out that Fert's interatomic distances for Mn_2O_3 could not be correct. Fert's parameter values agree well with those found for $(Mn_{0.983}Fe_{0.017})_2O_3$. Thus it appears that he calculated the distances for Mn_2O_3 incorrectly.